Cotangent of Complex Number
Jump to navigation
Jump to search
Theorem
Let $a$ and $b$ be real numbers.
Let $i$ be the imaginary unit.
Then:
Formulation 1
- $\cot \paren {a + b i} = \dfrac {\cos a \cosh b - i \sin a \sinh b} {\sin a \cosh b + i \cos a \sinh b}$
Formulation 2
- $\map \cot {a + b i} = \dfrac {-1 - i \cot a \coth b} {\cot a - i \coth b}$
Formulation 3
- $\map \cot {a + b i} = \dfrac {\cot a \coth^2 b - \cot a} {\cot^2 a + \coth^2 b} + \dfrac {-\cot^2 a \coth b - \coth b} {\cot^2 a + \coth^2 b} i$
where:
- $\cot$ denotes the cotangent function (real and complex)
- $\sin$ denotes the real sine function
- $\cos$ denotes the real cosine function
- $\sinh$ denotes the hyperbolic sine function
- $\cosh$ denotes the hyperbolic cosine function
- $\coth$ denotes the hyperbolic cotangent function.