# Count of Binary Operations Without Identity

## Theorem

Let $S$ be a set whose cardinality is $n$.

The number $N$ of possible different binary operations which do not have an identity element that can be applied to $S$ is given by:

$N = n^{\paren {\paren {n - 1}^2 + 1} } \paren {n^{2 \paren {n - 1} } - 1}$

### Sequence of Values of $N$

The sequence of $N$ for each $n$ begins:

$\begin{array} {c||r|r|r} n & n^{\paren {n^2} } & n^{\paren {n - 1}^2 + 1} & n^{\paren {\paren {n - 1}^2 + 1} } \paren {n^{2 \paren {n - 1} } - 1} \\ \hline 1 & 1 & 1 & 0 \\ 2 & 16 & 4 & 12 \\ 3 & 19 \ 683 & 243 & 19 \ 440 \\ 4 & 4 \ 294 \ 967 \ 296 & 1 \ 048 \ 576 & 4 \ 293 \ 918 \ 720 \\ \end{array}$

## Proof

From Count of Binary Operations on Set, the total number of operations is $n^{\paren {n^2} }$.

From Count of Binary Operations with Identity, the total number of operations with an identity is $n^{\paren {n - 1}^2 + 1}$.

So the total number of operations without an identity is:

$n^{\paren {n^2} } - n^{\paren {n - 1}^2 + 1} = n^{\paren {\paren {n - 1}^2 + 1} } \paren {n^{2 \paren {n - 1} } - 1}$

Hence the result.

$\blacksquare$