Cyclotomic Polynomial of Index times Prime Power

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $n, k \ge 1$ be natural numbers.

Let $p$ be a prime number.

Let $\Phi_n$ denote the $n$th cyclotomic polynomial.


Then $\map {\Phi_{p^k n}} x = \begin{cases} \map {\Phi_n} {x^{p^k}} & \text{if } p \divides n\\ \dfrac {\map {\Phi_n} {x^{p^k}}} {\map {\Phi_n} {x^{p^{k - 1}}}} & \text{if } p \nmid n \end{cases}$


Proof

Suppose $p \divides n$.

Then for all $m \in \Z$:

\(\ds m \perp n\) \(\implies\) \(\ds m \perp n \land m \perp p\) Law of Identity; Divisor of One of Coprime Numbers is Coprime to Other
\(\ds \) \(\implies\) \(\ds m \perp p^k n\) Integer Coprime to all Factors is Coprime to Whole
\(\ds \) \(\implies\) \(\ds m \perp n\) Divisor of One of Coprime Numbers is Coprime to Other
\(\ds \leadsto \ \ \) \(\ds m \perp p^k n\) \(\iff\) \(\ds m \perp n\) Definition of Biconditional

Hence:

\(\ds \map {\Phi_{p^k n} } x\) \(=\) \(\ds \prod_{\zeta} \paren {x - \zeta}\) where the product runs over all primitive complex $p^k n$th roots of unity
\(\ds \) \(=\) \(\ds \prod_{\substack {1 \mathop \le m \mathop \le p^k n \\ \gcd \set {m, p^k n} = 1} } \paren {x - \map \exp {\frac {2 \pi i m} {p^k n} } }\) Condition for Complex Root of Unity to be Primitive
\(\ds \) \(=\) \(\ds \prod_{\substack {1 \mathop \le m \mathop \le p^k n \\ \gcd \set {m, n} = 1} } \paren {x - \map \exp {\frac {2 \pi i m} {p^k n} } }\) as $m \perp p^k n \iff m \perp n$
\(\ds \) \(=\) \(\ds \prod_{q \mathop = 0}^{p^k - 1} \prod_{\substack {1 \mathop \le r \mathop \le n \\ \gcd \set {q n + r, n} = 1} } \paren {x - \map \exp {\frac {2 \pi i \paren {q n + r} } {p^k n} } }\) Writing $m = q n + r$ by Division Theorem
\(\ds \) \(=\) \(\ds \prod_{\substack {1 \mathop \le r \mathop \le n \\ \gcd \set {r, n} = 1} } \prod_{q \mathop = 0}^{p^k - 1} \paren {x - \map \exp {\frac {2 \pi i} {p^k} }^q \map \exp {\frac {2 \pi i r} {p^k n} } }\) rearranging; GCD with Remainder
\(\ds \) \(=\) \(\ds \prod_{\substack {1 \mathop \le r \mathop \le n \\ \gcd \set {r, n} = 1} } \paren {x^{p^k} - \map \exp {\frac {2 \pi i r} n} }\) Factorisation of $z^n - a$
\(\ds \) \(=\) \(\ds \prod_{\zeta} \paren {x^{p^k} - \zeta}\) where the product runs over all primitive complex $n$th roots of unity; Condition for Complex Root of Unity to be Primitive
\(\ds \) \(=\) \(\ds \map {\Phi_n} {x^{p^k} }\) Definition of Cyclotomic Polynomial

$\Box$


Now suppose $p \nmid n$.

We still have $p \divides p n$.

Write $p^k = p^{k - 1} p n$.

Notice that the result we proved above holds trivially for $k = 0$:

$\map {\Phi_{p^0 n} } x = \map {\Phi_n } x = \map {\Phi_n } {x^1} = \map {\Phi_n } {x^{p^0}}$

Hence from the above:

$\map {\Phi_{p^k n} } x = \map {\Phi_{p n}} {x^{p^{k - 1}}}$


We need the following result:

the sets $\set {m \in \Z: m \perp p n}$ and $\set {p r: r \perp n}$ are disjoint and has union $\set {m \in \Z: m \perp n}$


First to show that they are indeed disjoint:

Suppose $x \in \set {p r: r \perp n}$.

Then $p \divides x$.

Since $p \divides p n$:

$x \not \perp p n$

and thus:

$x \notin \set {m \in \Z: m \perp p n}$

Hence the sets are disjoint.


Now we show that their union is indeed $\set {m \in \Z: m \perp n}$.

By Divisor of One of Coprime Numbers is Coprime to Other:

$\forall m \in \Z: m \perp p n \implies \paren {m \perp p \land m \perp n}$

This gives:

$\set {m \in \Z: m \perp p n} \subseteq \set {m \in \Z: m \perp n}$

Let $x \in \set {p r: r \perp n}$.

We are given that $p \perp n$.

By Integer Coprime to all Factors is Coprime to Whole:

$x \perp n$

Hence $x \in \set {m \in \Z: m \perp n}$.

This gives:

$\set {p r: r \perp n} \subseteq \set {m \in \Z: m \perp n}$

By Union of Subsets is Subset:

$\set {m \in \Z: m \perp p n} \cup \set {p r: r \perp n} \subseteq \set {m \in \Z: m \perp n}$


For the other direction, we let $x \notin \set {m \in \Z: m \perp p n} \cup \set {p r: r \perp n}$.

Then by De Morgan's Laws (Set Theory)/Set Complement:

$x \in \set {m \in \Z: m \not \perp p n} \cap \set {p r: r \not \perp n}$.

By definition of intersection:

$x \in \set {p r: r \not \perp n}$

Thus:

$\exists d \in \Z: d > 1: d \divides r \divides x \land d \divides n$

Therefore $x \not \perp n$.

This gives:

$x \notin \set {m \in \Z: m \perp n}$

Hence:

$\set {m \in \Z: m \perp n} \subseteq \set {m \in \Z: m \perp p n} \cup \set {p r: r \perp n}$

and we have our result by definition of set equality.


Therefore:

\(\ds \map {\Phi_{p n} } {x^{p^{k - 1} } }\) \(=\) \(\ds \prod_{\zeta} \paren {x^{p^{k - 1} } - \zeta}\) where the product runs over all primitive complex $p n$th roots of unity
\(\ds \) \(=\) \(\ds \prod_{\substack {1 \mathop \le m \mathop \le p n \\ m \mathop \perp p n} } \paren {x^{p^{k - 1} } - \map \exp {\frac {2 \pi i m} {p n} } }\) Condition for Complex Root of Unity to be Primitive
\(\ds \) \(=\) \(\ds \prod_{\substack {1 \mathop \le m \mathop \le p n \\ m \mathop \perp n} } \paren {x^{p^{k - 1} } - \map \exp {\frac {2 \pi i m} {p n} } } / \prod_{\substack {1 \mathop \le p r \mathop \le p n \\ \gcd \set {r, n} = 1} } \paren {x^{p^{k - 1} } - \map \exp {\frac {2 \pi i m} {p n} } }\) from above
\(\ds \) \(=\) \(\ds \prod_{\substack {1 \mathop \le m \mathop \le p n \\ m \mathop \perp n} } \paren {x^{p^{k - 1} } - \map \exp {\frac {2 \pi i m} {p n} } } / \prod_{\zeta} \paren {x^{p^k} - \zeta}\) where the product runs over all primitive complex $n$th roots of unity; Condition for Complex Root of Unity to be Primitive
\(\ds \) \(=\) \(\ds \prod_{\substack {1 \mathop \le m \mathop \le p n \\ m \mathop \perp n} } \paren {x^{p^{k - 1} } - \map \exp {\frac {2 \pi i m} {p n} } } / \map {\Phi_n} {x^{p^{k - 1} } }\) Definition of Cyclotomic Polynomial
\(\ds \) \(=\) \(\ds \prod_{q \mathop = 0}^{p - 1} \prod_{\substack {1 \mathop \le r \mathop \le n \\ \gcd \set {q n + r, n} = 1} } \paren {x^{p^{k - 1} } - \map \exp {\frac {2 \pi i \paren {q n + r} } {p n} } } / \map {\Phi_n} {x^{p^{k - 1} } }\) Writing $m = q n + r$ by Division Theorem
\(\ds \) \(=\) \(\ds \prod_{\substack {1 \mathop \le r \mathop \le n \\ \gcd \set {r, n} = 1} } \prod_{q \mathop = 0}^{p - 1} \paren {x^{p^{k - 1} } - \map \exp {\frac {2 \pi i} p}^q \map \exp {\frac {2 \pi i r} {p n} } } / \map {\Phi_n} {x^{p^{k - 1} } }\) rearranging; GCD with Remainder
\(\ds \) \(=\) \(\ds \prod_{\substack {1 \mathop \le r \mathop \le n \\ \gcd \set {r, n} = 1} } \paren {x^{p^k} - \map \exp {\frac {2 \pi i r} n} } / \map {\Phi_n} {x^{p^{k - 1} } }\) Factorisation of $z^n - a$
\(\ds \) \(=\) \(\ds \prod_{\zeta} \paren {x^{p^k} - \zeta} / \map {\Phi_n} {x^{p^{k - 1} } }\) where the product runs over all primitive complex $n$th roots of unity; Condition for Complex Root of Unity to be Primitive
\(\ds \) \(=\) \(\ds \map {\Phi_n} {x^{p^k} } / \map {\Phi_n} {x^{p^{k - 1} } }\) Definition of Cyclotomic Polynomial

as required.

$\blacksquare$