De Polignac's Formula/Examples/7 in 1000
Jump to navigation
Jump to search
Example of Use of De Polignac's Formula
The prime factor $7$ appears in $1000!$ to the power of $164$.
That is:
- $7^{164} \divides 1000!$
but:
- $7^{165} \nmid 1000!$
Proof
Let $\mu$ denote the power of $7$ which divides $1000!$
\(\ds \mu\) | \(=\) | \(\ds \sum_{k \mathop > 0} \floor {\frac {1000} {7^k} }\) | De Polignac's Formula | |||||||||||
\(\ds \) | \(=\) | \(\ds \floor {\frac {1000} 7} + \floor {\frac {1000} {49} } + \floor {\frac {1000} {343} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 142 + 20 + 2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 164\) |
$\blacksquare$