Definite Integral from 0 to Half Pi of Logarithm of Sine x/Lemma

From ProofWiki
Jump to navigation Jump to search

Lemma for Definite Integral from 0 to Half Pi of Logarithm of Sine x

$\ds \int_0^\pi \map \ln {\sin x} \rd x = 2 \int_0^{\pi/2} \map \ln {\sin x} \rd x$


Proof

We have:

\(\ds \int_{\pi/2}^\pi \map \ln {\sin x} \rd x\) \(=\) \(\ds -\int_{\pi/2}^0 \map \ln {\map \sin {\pi - x} } \rd x\) substituting $x \mapsto \pi - x$
\(\ds \) \(=\) \(\ds \int_0^{\pi/2} \map \ln {\sin x} \rd x\) Reversal of Limits of Definite Integral, Sine of Supplementary Angle

We can therefore write:

\(\ds \int_0^\pi \map \ln {\sin x} \rd x\) \(=\) \(\ds \int_0^{\pi/2} \map \ln {\sin x} \rd x + \int_{\pi/2}^\pi \map \ln {\sin x} \rd x\) Sum of Integrals on Adjacent Intervals for Integrable Functions
\(\ds \) \(=\) \(\ds 2 \int_0^{\pi/2} \map \ln {\sin x} \rd x\)

$\blacksquare$