Definite Integral from 0 to Half Pi of Logarithm of Sine x

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int_0^{\pi/2} \map \ln {\sin x} \rd x = -\frac \pi 2 \ln 2$


Proof 1

By Definite Integral from $0$ to $\dfrac \pi 2$ of $\map \ln {\sin x}$: Lemma, we have:

$\ds \int_0^\pi \map \ln {\sin x} \rd x = 2 \int_0^{\pi/2} \map \ln {\sin x} \rd x$

We also have:

\(\ds \int_0^{\pi/2} \map \ln {\sin x} \rd x\) \(=\) \(\ds \int_0^{\pi/2} \map \ln {\map \sin {\frac \pi 2 - x} } \rd x\) Integral between Limits is Independent of Direction
\(\ds \) \(=\) \(\ds \int_0^{\pi/2} \map \ln {\cos x} \rd x\) Sine of Complement equals Cosine

giving:

\(\ds 2 \int_0^{\pi/2} \map \ln {\sin x} \rd x\) \(=\) \(\ds \int_0^{\pi/2} \map \ln {\sin x \cos x} \rd x\) Sum of Logarithms
\(\ds \) \(=\) \(\ds \int_0^{\pi/2} \map \ln {\frac 1 2 \sin 2 x} \rd x\) Double Angle Formula for Sine
\(\ds \) \(=\) \(\ds \frac \pi 2 \map \ln {\frac 1 2} + \int_0^{\pi/2} \map \ln {\sin 2 x} \rd x\) Primitive of Constant, Sum of Logarithms
\(\ds \) \(=\) \(\ds \frac \pi 2 \map \ln {\frac 1 2} + \frac 1 2 \int_0^\pi \map \ln {\sin u} \rd u\) substituting $u = 2 x$
\(\ds \) \(=\) \(\ds -\frac \pi 2 \ln 2 + \int_0^{\pi/2} \map \ln {\sin u} \rd u\) Logarithm of Reciprocal

Therefore:

$\ds \int_0^{\pi/2} \map \ln {\sin x} \rd x = -\frac \pi 2 \ln 2$

$\blacksquare$


Proof 2

By Lemma, we have:

$\ds \int_0^\pi \map \ln {\sin x} \rd x = 2 \int_0^{\pi/2} \map \ln {\sin x} \rd x$

By Product of Sines of Fractions of Pi, we have:

$\ds \prod_{k \mathop = 1}^{n - 1} \map \sin {\frac {k \pi} n} = \frac n {2^{n - 1} }$

Therefore, we have:

\(\ds \sum_{k \mathop = 1}^{n - 1} \map \ln {\map \sin {\frac {k \pi} n} }\) \(=\) \(\ds \map \ln {\prod_{k \mathop = 1}^{n - 1} \map \sin {\frac {k \pi} n} }\) Sum of Logarithms: Natural Logarithm
\(\ds \) \(=\) \(\ds \map \ln {\frac n {2^{n - 1} } }\)
\(\ds \) \(=\) \(\ds \ln n - \paren {n - 1} \ln 2\) Difference of Logarithms

We have:

\(\ds \int_0^\pi \map \ln {\sin x} \rd x\) \(=\) \(\ds \lim_{n \mathop \to \infty} \frac \pi n \sum_{k \mathop = 1}^{n - 1} \map \ln {\map \sin {\frac {\pi k} n} }\) Definition of Riemann Integral
\(\ds \) \(=\) \(\ds \lim_{n \mathop \to \infty} \paren {\frac \pi n \ln n - \pi \paren {1 - \frac 1 n} \ln 2}\)

We can show the first term to vanish:

\(\ds \lim_{n \mathop \to \infty} \frac \pi n \ln n\) \(=\) \(\ds \pi \lim_{u \mathop \to \infty} u e^{-u}\) letting $n = e^u$
\(\ds \) \(=\) \(\ds 0\) Limit to Infinity of $x^n e^{-a x}$

So:

\(\ds \lim_{n \mathop \to \infty} \paren {\frac \pi n \ln n - \pi \paren {1 - \frac 1 n} \ln 2}\) \(=\) \(\ds -\pi \ln 2 \lim_{n \mathop \to \infty} \paren {1 - \frac 1 n}\) Combined Sum Rule for Limits of Real Functions
\(\ds \) \(=\) \(\ds -\pi \ln 2\)

giving:

$\ds \int_0^{\pi/2} \map \ln {\sin x} \rd x = -\frac \pi 2 \ln 2$

$\blacksquare$


Sources