Definite Integral from 0 to Half Pi of x over Sine x
Jump to navigation
Jump to search
Theorem
- $\ds \int_0^{\pi/2} \frac x {\sin x} \rd x = 2 G$
where $G$ is Catalan's constant.
Proof
From Definite Integral from $0$ to $1$ of $\dfrac {\arctan x} x$, we have:
- $\ds \int_0^1 \frac {\arctan x} x \rd x = G$
Let:
- $x = \tan \theta$
By Derivative of Tangent Function, we have:
- $\ds \frac {\d x} {\d \theta} = \sec^2 \theta$
We have, by Arctangent of Zero is Zero:
- as $x \to 0$, $\theta \to 0$.
We also have, by Arctangent of One:
- as $x \to 1$, $\theta \to \dfrac \pi 4$
We therefore have:
\(\ds \int_0^1 \frac {\arctan x} x \rd x\) | \(=\) | \(\ds \int_0^{\pi/4} \frac {\sec^2 \theta \map \arctan {\tan \theta} } {\tan \theta} \rd \theta\) | substituting $x = \tan \theta$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_0^{\pi/4} \frac \theta {\cos^2 \theta} \times \frac {\cos \theta} {\sin \theta} \rd \theta\) | Definition of Real Secant Function, Definition of Real Tangent Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_0^{\pi/4} \frac \theta {\sin \theta \cos \theta} \rd \theta\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \int_0^{\pi/4} \frac \theta {\frac 1 2 \sin 2 \theta} \rd \theta\) | Double Angle Formula for Sine | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \int_0^{\pi/2} \frac \phi {\sin \phi} \rd \phi\) | substituting $\phi = 2 \theta$ |
giving:
- $\ds \int_0^{\pi/2} \frac \phi {\sin \phi} \rd \phi = 2 G$
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 15$: Definite Integrals involving Trigonometric Functions: $15.62$