Double Angle Formulas/Sine
< Double Angle Formulas(Redirected from Double Angle Formula for Sine)
Jump to navigation
Jump to search
Theorem
- $\sin 2 \theta = 2 \sin \theta \cos \theta$
where $\sin$ and $\cos$ denote sine and cosine respectively.
Corollary
- $\sin 2 \theta = \dfrac {2 \tan \theta} {1 + \tan^2 \theta}$
Proof 1
\(\ds \cos 2 \theta + i \sin 2 \theta\) | \(=\) | \(\ds \paren {\cos \theta + i \sin \theta}^2\) | De Moivre's Formula | |||||||||||
\(\ds \) | \(=\) | \(\ds \cos^2 \theta + i^2 \sin^2 \theta + 2 i \cos \theta \sin \theta\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \cos^2 \theta - \sin^2 \theta + 2 i \cos \theta \sin \theta\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \sin 2 \theta\) | \(=\) | \(\ds 2 \cos \theta \sin \theta\) | equating imaginary parts |
$\blacksquare$
Proof 2
\(\ds \sin 2 \theta\) | \(=\) | \(\ds \map \sin {\theta + \theta}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sin \theta \cos \theta + \cos \theta \sin \theta\) | Sine of Sum | |||||||||||
\(\ds \) | \(=\) | \(\ds 2 \sin \theta \cos \theta\) |
$\blacksquare$
Proof 3
Consider an isosceles triangle $\triangle ABC$ with base $BC$ and apex $\angle BAC = 2 \alpha$.
Construct the angle bisector to $\angle BAC$ and name it $AH$:
- $\angle BAH = \angle CAH = \alpha$
From Bisector of Apex of Isosceles Triangle is Perpendicular to Base:
- $AH \perp BC$
From Area of Triangle in Terms of Two Sides and Angle:
\(\ds \map \Area {\triangle BAH}\) | \(=\) | \(\ds \dfrac {BA \cdot AH \sin \alpha} 2\) | ||||||||||||
\(\ds \map \Area {\triangle CAH}\) | \(=\) | \(\ds \dfrac {CA \cdot AH \sin \alpha} 2\) |
By definition of sine:
\(\ds AH\) | \(=\) | \(\ds CA \cos \alpha\) | ||||||||||||
\(\ds AH\) | \(=\) | \(\ds BA \cos \alpha\) |
and so:
\(\ds \map \Area {\triangle BAH}\) | \(=\) | \(\ds \dfrac {BA \cdot CA \cos \alpha \sin \alpha} 2\) | ||||||||||||
\(\ds \map \Area {\triangle CAH}\) | \(=\) | \(\ds \dfrac {CA \cdot BA \cos \alpha \sin \alpha} 2\) | ||||||||||||
\(\ds \map \Area {\triangle ABC}\) | \(=\) | \(\ds \map \Area {\triangle BAH} + \map \Area {\triangle CAH}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {BA \cdot CA \cos \alpha \sin \alpha} 2 + \frac {CA \cdot BA \cos \alpha \sin \alpha} 2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds BA \cdot CA \cos \alpha \sin \alpha\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {BA \cdot CA \sin 2 \alpha} 2\) | Area of Triangle in Terms of Two Sides and Angle ($\triangle ABC$) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \sin 2 \alpha\) | \(=\) | \(\ds 2 \cos \alpha \sin \alpha\) | dividing both sides by $\dfrac {BA \cdot CA} 2$ |
$\blacksquare$
Proof 4
\(\ds \sin 2 \theta\) | \(=\) | \(\ds \frac 1 {2 i} \paren {e^{2 i \theta} - e^{-2 i \theta} }\) | Sine Exponential Formulation | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {2 i} \paren {e^{i \theta} + e^{-i \theta} } \paren {e^{i \theta} - e^{-i \theta} }\) | Difference of Two Squares | |||||||||||
\(\ds \) | \(=\) | \(\ds 2 \paren {\frac {e^{i \theta} - e^{-i \theta} } {2 i} \cdot \frac {e^{i \theta} + e^{-i \theta} } 2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 2 \sin \theta \cos \theta\) | Sine Exponential Formulation, Cosine Exponential Formulation |
$\blacksquare$
Also see
Sources
- 1953: L. Harwood Clarke: A Note Book in Pure Mathematics ... (previous) ... (next): $\text V$. Trigonometry: Formulae $(16)$
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 5$: Trigonometric Functions: $5.38$
- 1977: K.G. Binmore: Mathematical Analysis: A Straightforward Approach ... (previous) ... (next): $\S 16.3 \ (3) \ \text{(iii)}$
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): sine
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): double-angle formulae
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): double-angle formulae
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): double-angle formula (in trigonometry)
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): Appendix $12$: Trigonometric formulae: Double-angle formulae