Definite Integral of Even Function/Corollary

From ProofWiki
Jump to navigation Jump to search

Corollary to Definite Integral of Even Function

Let $f$ be an even function with a primitive on the open interval $\openint {-a} a$, where $a > 0$.


Then the improper integral of $f$ on $\openint {-a} a$ is:

$\displaystyle \int_{\mathop \to -a}^{\mathop \to a} \map f x \rd x = 2 \int_0^{\mathop \to a} \map f x \rd x$


Proof

\(\displaystyle \int_{\mathop \to -a}^{\mathop \to a} \map f x \rd x\) \(=\) \(\displaystyle \lim_{y \to a} \int_{-y}^y \map f x \rd x\) Definition of Improper Integral over Open Interval
\(\displaystyle \) \(=\) \(\displaystyle \lim_{y \mathop \to a} 2 \int_0^y \map f x \rd x\) Definite Integral of Even Function
\(\displaystyle \) \(=\) \(\displaystyle 2 \lim_{y \mathop \to a} \int_0^y \map f x \rd x\) Multiple Rule for Limits of Functions
\(\displaystyle \) \(=\) \(\displaystyle 2 \int_0^{\mathop \to a} \map f x \rd x\) Definition of Improper Integral over Open Interval

$\blacksquare$