Definite Integral of Partial Derivative
Theorem
Let $\map f {x, y}$ and $\map {\dfrac {\partial f} {\partial x} } {x, y}$ be continuous functions of $x$ and $y$ on $D = \closedint {x_1} {x_2} \times \closedint a b$.
Then:
- $\ds \frac \d {\d x} \int_a^b \map f {x, y} \rd y = \int_a^b \map {\frac {\partial f} {\partial x} } {x, y} \rd y$
for $x \in \closedint {x_1} {x_2}$.
Proof 1
From Leibniz's Integral Rule:
- $\ds \frac \d {\d y} \int_{\map a y}^{\map b y} \map f {x, y} \rd x = \map f {y, \map b y} \frac {\d b} {\d y} - \map f {y, \map a y} \frac {\d a} {\d y} + \int_{\map a y}^{\map b y} \frac {\partial} {\partial y} \map f {x, y} \rd x$
where $\map a y$, $\map b y$ are continuously differentiable.
Setting $\map a y$ and $\map b y$ constant, so that $\exists a, b \in \R: \map a y = a, \map b y = b$:
- $\dfrac {\d a} {\d y} = \dfrac {\d b} {\d y} = 0$
from which the result follows immediately.
$\blacksquare$
Proof 2
Define $\ds \map G x = \int_a^b \map f {x, y} \rd y$.
The continuity of $f$ ensures that $G$ exists.
Then by linearity of the integral:
- $\dfrac {\Delta G} {\Delta x} = \dfrac {\map G {x + \Delta x} - \map G x} {\Delta x} = \ds \int_a^b \frac {\map f {x + \Delta x, y} - \map f {x, y} } {\Delta x} \rd y$
We want to find the limit of this quantity as $\Delta x$ approaches zero.
For each $y \in \closedint a b$, we can consider $\map {f_y} x = \map f {x, y}$ as a separate function of the single variable $x$, with $\dfrac {\d f_y} {\d x} = \dfrac {\partial f} {\partial x}$.
Thus by the Mean Value Theorem, there is a number $c_y \in \openint x {x + \Delta x}$ such that:
- $\map {f_y} {x + \Delta x} - \map {f_y} x = \map {\dfrac {\d f_y} {\d x} } {c_y} \Delta x$
That is:
- $\map f {x + \Delta x, y} - \map f {x, y} = \map {\dfrac {\partial f} {\partial x} } {c_y, y} \Delta x$
Therefore:
- $\dfrac {\Delta G} {\Delta x} = \ds \int_a^b \map {\frac {\partial f} {\partial x} } {c_y, y} \rd y$
Now, pick any $\epsilon > 0$ and set $\epsilon_0 = \dfrac {\epsilon} {b - a}$.
Since $\dfrac {\partial f} {\partial x}$ is continuous on the compact set $D$, it is uniformly continuous on $D$.
Hence for each $x$ and $y$:
- $\size {\map {\dfrac {\partial f} {\partial x} } {x + h, y} - \map {\dfrac {\partial f} {\partial x} } {x, y} } < \epsilon_0$
whenever $h$ is sufficiently small.
Since $x < c_y < x + \Delta x$, it follows that for sufficiently small $\Delta x$:
- $\size {\map {\dfrac {\partial f} {\partial x} } {c_y, y} - \map {\dfrac {\partial f} {\partial x} } {x, y} } < \epsilon_0$
regardless of our choice of $y$.
So we can say:
\(\ds \size {\lim_{\Delta x \mathop \to 0} \frac {\Delta G} {\Delta x} - \int_a^b \map {\frac {\partial f} {\partial x} } {x, y} \rd y}\) | \(=\) | \(\ds \lim_{\Delta x \mathop \to 0} \size {\int_a^b \map {\frac {\partial f} {\partial x} } {c_y, y} - \frac {\partial f}{\partial x} \rd y}\) | ||||||||||||
\(\ds \) | \(\le\) | \(\ds \lim_{\Delta x \mathop \to 0} \int_a^b \size {\map {\frac {\partial f} {\partial x} } {c_y, y} - \map {\frac {\partial f} {\partial x} } {x, y} } \rd y\) | ||||||||||||
\(\ds \) | \(\le\) | \(\ds \int_a^b \epsilon_0 \rd y\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \epsilon\) |
But since $\epsilon$ was arbitrary, it follows that:
- $\ds \lim_{\Delta x \mathop \to 0} \frac {\Delta G} {\Delta x} = \int_a^b \map {\frac {\partial f} {\partial x} } {x, y} \rd y$
and the theorem is proved.
$\blacksquare$