Category:Definite Integrals

From ProofWiki
Jump to: navigation, search

This category contains results about Definite Integrals.
Definitions specific to this category can be found in Definitions/Definite Integrals.

Let $\Delta$ be a finite subdivision of $\left[{a \,.\,.\, b}\right]$, $\Delta = \left\{{x_0, \ldots, x_n}\right\}$, $x_0 = a$ and $x_n = b$.

Let there for $\Delta$ be a corresponding sequence $C$ of sample points $c_i$, $C = \left({c_1, \ldots, c_n}\right)$, where $c_i \in \left[{x_{i - 1} \,.\,.\, x_i}\right]$ for every $i \in \left\{{1, \ldots, n}\right\}$.

Let $S \left({f; \Delta, C}\right)$ denote the Riemann sum of $f$ for the subdivision $\Delta$ and the sample point sequence $C$.

Then $f$ is said to be (properly) Riemann integrable on $\left[{a \,.\,.\, b}\right]$ if and only if:

$\exists L \in \R: \forall \epsilon \in \R_{>0}: \exists \delta \in \R_{>0}: \forall$ finite subdivision $\Delta$ of $\left[{a \,.\,.\, b}\right]: \forall$ sample point sequences $C$ of $\Delta: \left\Vert{\Delta}\right\Vert < \delta \implies \left\vert{S \left({f; \Delta, C}\right) - L}\right\vert < \epsilon$

where $\left\Vert{\Delta}\right\Vert$ denotes the norm of $\Delta$.

The real number $L$ is called the Riemann integral of $f$ over $\left[{a \,.\,.\, b}\right]$ and is denoted:

$\displaystyle \int_a^b f \left({x}\right) \rd x$

Pages in category "Definite Integrals"

The following 39 pages are in this category, out of 39 total.