Definition:Algebraically Independent
Jump to navigation
Jump to search
Definition
Let $L / K$ be a field extension.
Let $A \subseteq L$ be a subset of $L$.
Let $\map K {\set {X_\alpha: \alpha \in A} }$ be the field of rational functions in the indeterminates $\family {X_\alpha}_{\alpha \mathop \in A}$.
Then $A$ is algebraically independent over $K$ if and only if there exists a homomorphism:
- $\phi: \map K {\set {X_\alpha: \alpha \in A} } \to L$
such that, for all $\alpha \in A$:
- $\map \phi {X_\alpha} = \alpha$
Sources
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): algebraic independence