Definition:Area Hyperbolic Cotangent
Jump to navigation
Jump to search
Definition
Complex
The principal branch of the complex inverse hyperbolic cotangent function is defined as:
- $\forall z \in \C: \map \Arcoth z := \dfrac 1 2 \map \Ln {\dfrac {z + 1} {z - 1} }$
where $\Ln$ denotes the principal branch of the complex natural logarithm.
Real
The inverse hyperbolic cotangent $\arcoth: S \to \R$ is a real function defined on $S$ as:
- $\forall x \in S: \arcoth x := \dfrac 1 2 \map \ln {\dfrac {x + 1} {x - 1} }$
where $\ln$ denotes the natural logarithm of a (strictly positive) real number.
Also denoted as
The symbol used to denote the area hyperbolic cotangent function is variously seen as:
- $\arcoth$
- $\operatorname {acoth}$
- $\operatorname {actnh}$