Category:Definitions/Inverse Hyperbolic Cotangent
Jump to navigation
Jump to search
This category contains definitions related to Inverse Hyperbolic Cotangent.
Related results can be found in Category:Inverse Hyperbolic Cotangent.
The inverse hyperbolic cotangent is a multifunction defined on $S$ as:
- $\forall z \in S: \map {\coth^{-1} } z := \set {w \in \C: z = \map \coth w}$
where $\map \coth w$ is the hyperbolic cotangent function.
Also see
Pages in category "Definitions/Inverse Hyperbolic Cotangent"
The following 22 pages are in this category, out of 22 total.
A
C
I
- Definition:Inverse Hyperbolic Cotangent
- Definition:Inverse Hyperbolic Cotangent/Also known as
- Definition:Inverse Hyperbolic Cotangent/Complex
- Definition:Inverse Hyperbolic Cotangent/Complex/Definition 1
- Definition:Inverse Hyperbolic Cotangent/Complex/Definition 2
- Definition:Inverse Hyperbolic Cotangent/Complex/Principal Branch
- Definition:Inverse Hyperbolic Cotangent/Real
- Definition:Inverse Hyperbolic Cotangent/Real/Definition 1
- Definition:Inverse Hyperbolic Cotangent/Real/Definition 2