Definition:Bézout Domain

From ProofWiki
Jump to: navigation, search

Definition

A Bézout domain is an integral domain in which the sum of two principal ideals is again principal.

Equivalently, a Bézout domain is an integral domain in which every finitely generated ideal is principal.


Source of Name

This entry was named for Étienne Bézout.

Although even the definition of a ring, let alone that of an integral domain, was not formulated until over a century after his death, a Bézout Domain bears his name because in such a structure, each pair of elements satisfies an algebraic formulation of Bézout's Identity.