Definition:Bernoulli Numbers/Archaic Form
Jump to navigation
Jump to search
Definition
A different definition of the Bernoulli numbers can be found in older literature.
Usually denoted with the symbol ${B_n}^*$, they are considered archaic.
Definition 1
\(\ds \frac x {e^x - 1}\) | \(=\) | \(\ds 1 - \frac x 2 + \sum_{n \mathop = 1}^\infty \paren {-1}^{n - 1} \frac {B_n^* x^{2 n} } {\paren {2 n}!}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 1 - \frac x 2 + \frac {B_1^* x^2} {2!} - \frac {B_2^* x^4} {4!} + \frac {B_3^* x^6} {6!} - \cdots\) |
for $x \in \R$ such that $\size x < 2 \pi$
Definition 2
\(\ds 1 - \frac x 2 \cot \frac x 2\) | \(=\) | \(\ds \sum_{n \mathop = 1}^\infty \frac {B_n^* x^{2 n} } {\paren {2 n}!}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {B_1^* x^2} {2!} + \frac {B_2^* x^4} {4!} + \frac {B_3^* x^6} {6!} + \cdots\) |
for $x \in \R$ such that $\size x < \pi$
Sequence of Bernoulli Numbers: Archaic Form
The sequence of old style Bernoulli numbers begins:
\(\ds {B_1}^*\) | \(=\) | \(\ds \dfrac 1 6\) | \(\ds = B_2\) | |||||||||||
\(\ds {B_2}^*\) | \(=\) | \(\ds \dfrac 1 {30}\) | \(\ds = -B_4\) | |||||||||||
\(\ds {B_3}^*\) | \(=\) | \(\ds \dfrac 1 {42}\) | \(\ds = B_6\) | |||||||||||
\(\ds {B_4}^*\) | \(=\) | \(\ds \dfrac 1 {30}\) | \(\ds = -B_8\) | |||||||||||
\(\ds {B_5}^*\) | \(=\) | \(\ds \dfrac 5 {66}\) | \(\ds = B_{10}\) | |||||||||||
\(\ds {B_6}^*\) | \(=\) | \(\ds \dfrac {691} {2730}\) | \(\ds = -B_{12}\) | |||||||||||
\(\ds {B_7}^*\) | \(=\) | \(\ds \dfrac 7 6\) | \(\ds = B_{14}\) | |||||||||||
\(\ds {B_8}^*\) | \(=\) | \(\ds \dfrac {3617} {510}\) | \(\ds = -B_{16}\) | |||||||||||
\(\ds {B_9}^*\) | \(=\) | \(\ds \dfrac {43 \, 867} {798}\) | \(\ds = B_{18}\) | |||||||||||
\(\ds {B_{10} }^*\) | \(=\) | \(\ds \dfrac {174 \, 611} {330}\) | \(\ds = -B_{20}\) | |||||||||||
\(\ds {B_{11} }^*\) | \(=\) | \(\ds \dfrac {854 \, 513} {138}\) | \(\ds = B_{22}\) | |||||||||||
\(\ds {B_{12} }^*\) | \(=\) | \(\ds \dfrac {236 \, 364 \, 091} {2730}\) | \(\ds = -B_{24}\) |
where $B_2, B_4, \ldots$ are the standard form Bernoulli numbers.
Also see
Sources
- Weisstein, Eric W. "Bernoulli Number." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/BernoulliNumber.html