Definition:C*-Algebra

From ProofWiki
Jump to navigation Jump to search

Definition

Let $\struct {A, \ast, \norm {\, \cdot \,} }$ be a Banach $\ast$-algebra over $\C$ such that:

\((\text C^* 5)\)   $:$     \(\ds \forall x \in A:\)    \(\ds \norm {x x^*} \)   \(\ds = \)   \(\ds \norm x^2 \)      

Then $\struct {A, \ast, \norm {\, \cdot \,} }$ is referred to as a $\text C^*$-algebra.


That is, a $\text C^*$-algebra is a Banach algebra $\struct {A, \norm {\, \cdot \,} }$ equipped with an involution $\ast : A \to A$ satisfying:

\((\text C^* 1)\)   $:$     \(\ds \forall x \in A:\)    \(\ds x^{**} \)   \(\ds = \)   \(\ds x \)      
\((\text C^* 2)\)   $:$     \(\ds \forall x \in A:\)    \(\ds x^* + y^* \)   \(\ds = \)   \(\ds \paren {x + y}^* \)      
\((\text C^* 3)\)   $:$     \(\ds \forall x, y \in A:\)    \(\ds x^* y^* \)   \(\ds = \)   \(\ds \paren {y x}^* \)      
\((\text C^* 4)\)   $:$     \(\ds \forall x \in A, c \in \C:\)    \(\ds \paren {c x}^* \)   \(\ds = \)   \(\ds \overline c \paren x^* \)      
\((\text C^* 5)\)   $:$     \(\ds \forall x \in A:\)    \(\ds \norm {x x^*} \)   \(\ds = \)   \(\ds \norm x^2 \)      

We call $(\text C^\ast 5)$ the $\text C^*$ identity.


Also known as

An older term for $\text C^*$-algebra is $\text B^*$-algebra.


Also see

  • Results about $\text C^*$-algebras can be found here.


Sources