Definition:Characteristic Function (Set Theory)/Set

From ProofWiki
Jump to navigation Jump to search

This page is about Characteristic Function in the context of Set Theory. For other uses, see Characteristic Function.


Let $E \subseteq S$.

The characteristic function of $E$ is the function $\chi_E: S \to \set {0, 1}$ defined as:

$\map {\chi_E} x = \begin {cases} 1 & : x \in E \\ 0 & : x \notin E \end {cases}$

That is:

$\map {\chi_E} x = \begin {cases} 1 & : x \in E \\ 0 & : x \in \relcomp S E \end {cases}$

where $\relcomp S E$ denotes the complement of $E$ relative to $S$.


Let $S$ be a set

Let $E \subseteq S$ be a subset.

Let $\chi_E: S \to \set {0, 1}$ be the characteristic function of $E$.

The support of $\chi_E$, denoted $\map \supp {\chi_E}$, is the set $E$.

That is:

$\map \supp {\chi_E} = \set {x \in S: \map {\chi_E} x = 1}$

Also denoted as

The characteristic function of a set $E$ can be expressed in Iverson bracket notation as:

$\map {\chi_E} x = \sqbrk {x \in E}$