Definition:Continuous Functional Calculus
Definition
Let $\struct {A, \ast, \norm {\, \cdot \,} }$ be a unital $\text C^\ast$-algebra.
Let $x \in A$ be normal.
Let $\map {\sigma_A} x$ denote the spectrum of $x$ in $A$.
Let $\iota : \map {\sigma_A} x \to \C$ be the inclusion mapping.
Let $\Theta_x : \map \CC {\map {\sigma_A} x} \to A$ be a unital $\ast$-algebra homomorphism such that:
- $\map {\Theta_x} \iota = x$
where $\map \CC {\map {\sigma_A} x}$ is the space of continuous functions on $\map {\sigma_A} x$.
We call $\Theta_x$ the continuous functional calculus of $x$.
For $f \in \map \CC {\map {\sigma_A} x}$, we define:
- $\map f x = \map {\Theta_x} f$
Non-Unital Algebra
Let $\struct {A, \ast, \norm {\, \cdot \,} }$ be a $\text C^\ast$-algebra that is not necessarily unital.
Let $\struct {A_+, \ast, \norm {\, \cdot \,}_\ast}$ be the unitization of $\struct {A, \ast, \norm {\, \cdot \,} }$.
Let:
- $A_0 = \set {\tuple {a, 0} : a \in A}$
Let $x \in A$ be normal.
Let $\map {\sigma_A} x$ denote the spectrum of $x$ in $A$.
Let $\map {\sigma_{A_+} } {\tuple {x, 0} }$ denote the spectrum of $\tuple {x, 0}$ in $A_+$.
Let $f : \map {\sigma_{A_+} } {\tuple {x, 0} } \to \C$ be continuous with $\map f 0 = 0$.
Let $\map f {\tuple {x, 0} }$ be obtained from the continuous functional calculus for $A_+$, with $f$.
We take $\map f x \in A$ to be such that:
- $\map f {\tuple {x, 0} } = \tuple {\map f x, 0}$
Also see
- Existence and Uniqueness of Continuous Functional Calculus shows the existence and uniqueness of $\Theta_x$ for each normal $x \in A$, establishing that $\map f x$ is well-defined
Sources
- 1990: Gerard J. Murphy: C*-Algebras and Operator Theory ... (previous) ... (next): $2.1$: $C^\ast$-Algebras