Definition:Differentiable Mapping/Real Function/Point/Definition 1

From ProofWiki
Jump to navigation Jump to search

Definition

Let $f$ be a real function defined on an open interval $\openint a b$.

Let $\xi$ be a point in $\openint a b$.


$f$ is differentiable at the point $\xi$ if and only if the limit:

$\displaystyle \lim_{x \mathop \to \xi} \frac {\map f x - \map f \xi} {x - \xi}$

exists.


Sources