# Definition:Differential Complex

Jump to navigation
Jump to search

This article needs to be linked to other articles.In particular: "differential" in this contextYou can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by adding these links.To discuss this page in more detail, feel free to use the talk page.When this work has been completed, you may remove this instance of `{{MissingLinks}}` from the code. |

## Definition

Let $R$ be a commutative ring with unity.

Let $\ds M = \bigoplus_{n \mathop \in \Z} M^n$ be a $\Z$-graded $R$-module that is also a differential module with differential $\d$.

Then $M$ is a **differential complex** if $\d$ satisfies:

- $\map \d {M^n} \subseteq M^{n + 1}$

for all $n \in \Z$.

The notation $\d_n := \d \restriction_{M_n}$ is often seen.

## Also see

## Sources

There are no source works cited for this page.Source citations are highly desirable, and mandatory for all definition pages.Definition pages whose content is wholly or partly unsourced are in danger of having such content deleted. To discuss this page in more detail, feel free to use the talk page. |