Definition:Module

From ProofWiki
Jump to: navigation, search

Definition

Let $\struct {R, +_R, \times_R}$ be a ring.

Let $\struct {G, +_G}$ be an abelian group.


A module over $R$ is an $R$-algebraic structure with one operation $\struct {G, +_G, \circ}_R$ which is both a left module and a right module:


Left Module

Let $\left({R, +_R, \times_R}\right)$ be a ring.

Let $\left({G, +_G}\right)$ be an abelian group.


A left module over $R$ is an $R$-algebraic structure $\left({G, +_G, \circ}\right)_R$ with one operation $\circ$, the (left) ring action, which satisfies the left module axioms:

\((M \, 1)\)   $:$   Scalar Multiplication (Left) Distributes over Module Addition      \(\displaystyle \forall \lambda \in R: \forall x, y \in G:\)    \(\displaystyle \lambda \circ \paren {x +_G y} \)   \(\displaystyle = \)   \(\displaystyle \paren {\lambda \circ x} +_G \paren {\lambda \circ y} \)             
\((M \, 2)\)   $:$   Scalar Multiplication (Right) Distributes over Scalar Addition      \(\displaystyle \forall \lambda, \mu \in R: \forall x \in G:\)    \(\displaystyle \paren {\lambda +_R \mu} \circ x \)   \(\displaystyle = \)   \(\displaystyle \paren {\lambda \circ x} +_G \paren {\mu \circ x} \)             
\((M \, 3)\)   $:$   Associativity of Scalar Multiplication      \(\displaystyle \forall \lambda, \mu \in R: \forall x \in G:\)    \(\displaystyle \paren {\lambda \times_R \mu} \circ x \)   \(\displaystyle = \)   \(\displaystyle \lambda \circ \paren {\mu \circ x} \)             


Right Module

Let $\left({R, +_R, \times_R}\right)$ be a ring.

Let $\left({G, +_G}\right)$ be an abelian group.


A right module over $R$ is an $R$-algebraic structure $\left({G, +_G, \circ}\right)_R$ with one operation $\circ$, the (right) ring action, which satisfies the right module axioms:

\((RM \, 1)\)   $:$   Scalar Multiplication Right Distributes over Module Addition      \(\displaystyle \forall \lambda \in R: \forall x, y \in G:\)    \(\displaystyle \paren {x +_G y} \circ \lambda \)   \(\displaystyle = \)   \(\displaystyle \paren {x \circ \lambda} +_G \paren {y \circ \lambda} \)             
\((RM \, 2)\)   $:$   Scalar Multiplication Left Distributes over Scalar Addition      \(\displaystyle \forall \lambda, \mu \in R: \forall x \in G:\)    \(\displaystyle x \circ \paren {\lambda +_R \mu} \)   \(\displaystyle = \)   \(\displaystyle \paren {x \circ \lambda} +_G \paren {x\circ \mu} \)             
\((RM \, 3)\)   $:$   Associativity of Scalar Multiplication      \(\displaystyle \forall \lambda, \mu \in R: \forall x \in G:\)    \(\displaystyle x \circ \paren {\lambda \times_R \mu} \)   \(\displaystyle = \)   \(\displaystyle \paren {x \circ \lambda} \circ \mu \)             


Note that a module is not an algebraic structure unless $R$ and $G$ are the same set.


Scalar

The elements of the scalar ring $\struct {R, +_R, \times_R}$ are called scalars.


Vector

The elements of $\struct {G, +_G}$ are called vectors.


Zero Vector

The identity of $\struct {G, +_G}$ is usually denoted $\mathbf 0$, or some variant of this, and called the zero vector.

Note that on occasion it is advantageous to denote the zero vector differently, for example by $e$, or $0_V$ or $0_G$, in order to highlight the fact that the zero vector is not the same object as the zero scalar.


Also defined as

Sources who only deal with rings with unity often define a module as what on $\mathsf{Pr} \infty \mathsf{fWiki}$ is called a unitary module.

Sometimes no distinction is made between the module and the associated ring representation.


Also known as

A module over $R$ can also be referred to as an $R$-module.


Also see

  • Results about modules can be found here.


Special cases


Sources