Definition:Discrete Random Variable/Definition 2
Jump to navigation
Jump to search
Definition
Let $\struct {\Omega, \Sigma, \Pr}$ be a probability space.
Let $\struct {S, \Sigma'}$ be a measurable space.
Let $X$ be a random variable on $\struct {\Omega, \Sigma, \Pr}$ taking values in $\struct {S, \Sigma'}$.
Then we say that $X$ is a discrete random variable on $\struct {\Omega, \Sigma, \Pr}$ taking values in $\struct {S, \Sigma'}$ if and only if:
Sources
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): random variable
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): random variable