# Definition:Image (Set Theory)/Mapping/Mapping

## Contents

## Definition

Let $f: S \to T$ be a mapping.

### Definition 1

The **image** of a mapping $f: S \to T$ is the set:

- $\Img f = \set {t \in T: \exists s \in S: f \paren s = t}$

That is, it is the set of values taken by $f$.

### Definition 2

The **image** of a mapping $f: S \to T$ is the set:

- $\Img f = f \sqbrk S$

where $f \sqbrk S$ is the image of $S$ under $f$.

## Also denoted as

The notation $\Img f$ to denote the image of an object $f$ is specific to $\mathsf{Pr} \infty \mathsf{fWiki}$.

The usual notation is $\image f$ or a variant, but this is too easily confused with $\map \Im z$, the imaginary part of a complex number.

Hence the non-standard usage $\Img f$.

## Also known as

Some sources refer to this as the **direct image** of a mapping, in order to differentiate it from an inverse image.

Rather than apply a mapping $f$ directly to a subset $A$, those sources prefer to define the mapping induced by $f$ as a separate concept in its own right.

Also seen is the term **image set of mapping** for $\Img f$.

## Examples

### Image of $f \paren x = x^4 - 1$

Let $f: \R \to \R$ be the mapping defined as:

- $\forall x \in \R: f \paren x = x^4 - 1$

The image of $f$ is the unbounded closed interval:

- $\Img f = \hointr {-1} \to$

and so $f$ is not a surjection.

### Image of $f \paren x = x^2 - 4 x + 5$

Let $f: \R \to \R$ be the mapping defined as:

- $\forall x \in \R: f \paren x = x^2 - 4 x + 5$

The image of $f$ is the unbounded closed interval:

- $\Img f = \hointr 1 \to$

and so $f$ is not a surjection.

## Also see

- Definition:Preimage of Mapping (also known as an
**inverse image**)