Definition:Equilibrant
Jump to navigation
Jump to search
Definition
Let $\mathbf F_1, \mathbf F_2, \ldots, \mathbf F_n$ be a set of $n$ forces acting on a particle $B$ at a point $P$ in space.
The equilibrant of $\mathbf F_1, \mathbf F_2, \ldots, \mathbf F_n$ is defined as the force which is needed to prevent $B$ from moving.
Examples
Forces at $\polar {100 \, \mathrm {kg}, 150 \degrees}, \polar {75 \, \mathrm {kg}, 60 \degrees}, \polar {50 \, \mathrm {kg}, -45 \degrees}$
Three forces $\mathbf F_1, \mathbf F_2, \mathbf F_3$ act on a particle $B$ at a point $P$ embedded in the complex plane:
\(\ds \mathbf F_1\) | \(=\) | \(\ds \polar {100 \, \mathrm {kg}, 150 \degrees}\) | ||||||||||||
\(\ds \mathbf F_2\) | \(=\) | \(\ds \polar {75 \, \mathrm {kg}, 60 \degrees}\) | ||||||||||||
\(\ds \mathbf F_3\) | \(=\) | \(\ds \polar {50 \, \mathrm {kg}, -45 \degrees}\) |
The equilibrant $\mathbf E$ of $\mathbf F_1, \mathbf F_2, \mathbf F_3$ is:
- $\mathbf E = \polar {80.8 \, \mathrm {kg}, -80.2 \degrees}$
Also see
Sources
- 1981: Murray R. Spiegel: Theory and Problems of Complex Variables (SI ed.) ... (previous) ... (next): $1$: Complex Numbers: Supplementary Problems: Polar Form of Complex Numbers: $86$