Definition:Euler Numbers

From ProofWiki
Jump to navigation Jump to search

Definition

The Euler Numbers $E_n$ are a sequence of integers defined by the exponential generating function:

$\ds \sech x = \frac {2 e^x} {e^{2 x} + 1} = \sum_{n \mathop = 0}^\infty \frac {E_n x^n} {n!}$

where $\size x < \dfrac \pi 2$.


Recurrence Relation

$E_n = \begin {cases} 1 & : n = 0 \\ 0 & : n > 0, n = 2 r + 1 \\ \ds -\sum_{k \mathop = 0}^{n - 1} \binom {2 n} {2 k} E_{2 k} & : n > 0, n = 2 r \end {cases}$


Sequence of Euler Numbers

The sequence of Euler numbers begins:

\(\ds E_0\) \(=\) \(\ds 1\)
\(\ds E_2\) \(=\) \(\ds -1\)
\(\ds E_4\) \(=\) \(\ds 5\)
\(\ds E_6\) \(=\) \(\ds -61\)
\(\ds E_8\) \(=\) \(\ds 1385\)
\(\ds E_{10}\) \(=\) \(\ds -50 \, 521\)
\(\ds E_{12}\) \(=\) \(\ds 2 \, 702 \, 765\)
\(\ds E_{14}\) \(=\) \(\ds -199 \, 360 \, 981\)
\(\ds E_{16}\) \(=\) \(\ds 19 \, 391 \, 512 \, 145\)
\(\ds E_{18}\) \(=\) \(\ds -2 \, 404 \, 879 \, 675 \, 441\)
\(\ds E_{20}\) \(=\) \(\ds 370 \, 371 \, 188 \, 237 \, 525\)
\(\ds E_{22}\) \(=\) \(\ds -69 \, 348 \, 874 \, 393 \, 137 \, 901\)
\(\ds E_{24}\) \(=\) \(\ds 15 \, 514 \, 534 \, 163 \, 557 \, 086 \, 905\)

Odd index Euler numbers are all $0$.


Alternative Form

An alternative form of the Euler numbers can often be found.

Usually denoted with the symbol $E_n^*$, they are generally not used on $\mathsf{Pr} \infty \mathsf{fWiki}$.


Definition 1

\(\ds \sech x\) \(=\) \(\ds 1 + \sum_{n \mathop = 1}^\infty \paren {-1}^n \frac {E_n^* x^{2 n} } {\paren {2 n}!}\)
\(\ds \) \(=\) \(\ds 1 - \frac {E_1^* x^2} {2!} + \frac {E_2^* x^4} {4!} - \frac {E_3^* x^6} {6!} + \cdots\)

where $\size x < \dfrac \pi 2 $.


Definition 2

\(\ds \sec x\) \(=\) \(\ds 1 + \sum_{n \mathop = 1}^\infty \frac {E^*_n x^{2 n} } {\paren {2 n}!}\)
\(\ds \) \(=\) \(\ds 1 + \frac {E_1^* x^2} {2!} + \frac {E_2^* x^4} {4!} + \frac {E_3^* x^6} {6!} + \cdots\)


where $\size x < \dfrac \pi 2$.


Also known as

The Euler numbers are also known as the secant numbers or zig numbers.


Also see

  • Results about Euler Numbers can be found here.


Source of Name

This entry was named for Leonhard Paul Euler.


Sources