Definition:Euler Numbers/Alternative Form

From ProofWiki
Jump to navigation Jump to search

Definition

An alternative form of the Euler numbers can often be found.

Usually denoted with the symbol ${E_n}^*$, they are generally not used on $\mathsf{Pr} \infty \mathsf{fWiki}$.


Definition 1

\(\ds \sech x\) \(=\) \(\ds 1 + \sum_{n \mathop = 1}^\infty \paren {-1}^n \frac { {E_n}^* x^{2 n} } {\paren {2 n}!}\)
\(\ds \) \(=\) \(\ds 1 - \frac { {E_1}^* x^2} {2!} + \frac { {E_2}^* x^4} {4!} - \frac { {E_3}^* x^6} {6!} + \cdots\)

where $\size x < \dfrac \pi 2 $.


Definition 2

\(\ds \sec x\) \(=\) \(\ds 1 + \sum_{n \mathop = 1}^\infty \frac { {E_n}^* x^{2 n} } {\paren {2 n}!}\)
\(\ds \) \(=\) \(\ds 1 + \frac { {E_1}^* x^2} {2!} + \frac { {E_2}^* x^4} {4!} + \frac { {E_3}^* x^6} {6!} + \cdots\)


where $\size x < \dfrac \pi 2$.


Sequence of Euler Numbers: Alternative Form

The sequence of the alternative form of Euler numbers begins:

\(\ds {E_1}^*\) \(=\) \(\ds 1\) \(\ds = -E_2\)
\(\ds {E_2}^*\) \(=\) \(\ds 5\) \(\ds = E_4\)
\(\ds {E_3}^*\) \(=\) \(\ds 61\) \(\ds = -E_6\)
\(\ds {E_4}^*\) \(=\) \(\ds 1385\) \(\ds = E_8\)
\(\ds {E_5}^*\) \(=\) \(\ds 50 \, 521\) \(\ds = -E_{10}\)
\(\ds {E_6}^*\) \(=\) \(\ds 2 \, 702 \, 765\) \(\ds = E_{12}\)
\(\ds {E_7}^*\) \(=\) \(\ds 199 \, 360 \, 981\) \(\ds = -E_{14}\)
\(\ds {E_8}^*\) \(=\) \(\ds 19 \, 391 \, 512 \, 145\) \(\ds = E_{16}\)
\(\ds {E_9}^*\) \(=\) \(\ds 2 \, 404 \, 879 \, 675 \, 441\) \(\ds = -E_{18}\)
\(\ds {E_{10} }^*\) \(=\) \(\ds 370 \, 371 \, 188 \, 237 \, 525\) \(\ds = E_{20}\)
\(\ds {E_{11} }^*\) \(=\) \(\ds 69 \, 348 \, 874 \, 393 \, 137 \, 901\) \(\ds = -E_{22}\)
\(\ds {E_{12} }^*\) \(=\) \(\ds 15 \, 514 \, 534 \, 163 \, 557 \, 086 \, 905\) \(\ds = E_{24}\)

where $E_2, E_4, \ldots$ are the standard form Euler numbers.


Also see


Sources