Definition:Euler Numbers/Alternative Form
Jump to navigation
Jump to search
Definition
An alternative form of the Euler numbers can often be found.
Usually denoted with the symbol ${E_n}^*$, they are generally not used on $\mathsf{Pr} \infty \mathsf{fWiki}$.
Definition 1
\(\ds \sech x\) | \(=\) | \(\ds 1 + \sum_{n \mathop = 1}^\infty \paren {-1}^n \frac { {E_n}^* x^{2 n} } {\paren {2 n}!}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 1 - \frac { {E_1}^* x^2} {2!} + \frac { {E_2}^* x^4} {4!} - \frac { {E_3}^* x^6} {6!} + \cdots\) |
where $\size x < \dfrac \pi 2 $.
Definition 2
\(\ds \sec x\) | \(=\) | \(\ds 1 + \sum_{n \mathop = 1}^\infty \frac { {E_n}^* x^{2 n} } {\paren {2 n}!}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 1 + \frac { {E_1}^* x^2} {2!} + \frac { {E_2}^* x^4} {4!} + \frac { {E_3}^* x^6} {6!} + \cdots\) |
where $\size x < \dfrac \pi 2$.
Sequence of Euler Numbers: Alternative Form
The sequence of the alternative form of Euler numbers begins:
\(\ds {E_1}^*\) | \(=\) | \(\ds 1\) | \(\ds = -E_2\) | |||||||||||
\(\ds {E_2}^*\) | \(=\) | \(\ds 5\) | \(\ds = E_4\) | |||||||||||
\(\ds {E_3}^*\) | \(=\) | \(\ds 61\) | \(\ds = -E_6\) | |||||||||||
\(\ds {E_4}^*\) | \(=\) | \(\ds 1385\) | \(\ds = E_8\) | |||||||||||
\(\ds {E_5}^*\) | \(=\) | \(\ds 50 \, 521\) | \(\ds = -E_{10}\) | |||||||||||
\(\ds {E_6}^*\) | \(=\) | \(\ds 2 \, 702 \, 765\) | \(\ds = E_{12}\) | |||||||||||
\(\ds {E_7}^*\) | \(=\) | \(\ds 199 \, 360 \, 981\) | \(\ds = -E_{14}\) | |||||||||||
\(\ds {E_8}^*\) | \(=\) | \(\ds 19 \, 391 \, 512 \, 145\) | \(\ds = E_{16}\) | |||||||||||
\(\ds {E_9}^*\) | \(=\) | \(\ds 2 \, 404 \, 879 \, 675 \, 441\) | \(\ds = -E_{18}\) | |||||||||||
\(\ds {E_{10} }^*\) | \(=\) | \(\ds 370 \, 371 \, 188 \, 237 \, 525\) | \(\ds = E_{20}\) | |||||||||||
\(\ds {E_{11} }^*\) | \(=\) | \(\ds 69 \, 348 \, 874 \, 393 \, 137 \, 901\) | \(\ds = -E_{22}\) | |||||||||||
\(\ds {E_{12} }^*\) | \(=\) | \(\ds 15 \, 514 \, 534 \, 163 \, 557 \, 086 \, 905\) | \(\ds = E_{24}\) |
where $E_2, E_4, \ldots$ are the standard form Euler numbers.
Also see
Sources
- Weisstein, Eric W. "Euler Number." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/EulerNumber.html