Definition:Everywhere Dense/Normed Vector Space
Jump to navigation
Jump to search
Definition
Let $M = \struct {X, \norm {\, \cdot \,} }$ be a normed vector space.
Let $Y \subseteq X$ be a subset of $X$.
Suppose:
- $\forall x \in X: \forall \epsilon \in \R_{>0}: \exists y \in Y: \norm {x - y} < \epsilon$
Then $Y$ is (everywhere) dense in $X$.
Sources
- 2017: Amol Sasane: A Friendly Approach to Functional Analysis ... (previous) ... (next): $\S 1.3$: Normed and Banach spaces. Topology of normed spaces