Category:Definitions/Everywhere Dense
Jump to navigation
Jump to search
This category contains definitions related to Everywhere Dense.
Related results can be found in Category:Everywhere Dense.
Let $T = \struct {S, \tau}$ be a topological space.
Let $H \subseteq S$ be a subset.
Definition 1
The subset $H$ is (everywhere) dense in $T$ if and only if:
- $H^- = S$
where $H^-$ is the closure of $H$.
Definition 2
The subset $H$ is (everywhere) dense in $T$ if and only if the intersection of $H$ with every non-empty open set of $T$ is non-empty:
- $\forall U \in \tau \setminus \set \O: H \cap U \ne \O$
Definition 3
The subset $H$ is (everywhere) dense in $T$ if and only if every neighborhood of every point of $S$ contains at least one point of $H$.
Pages in category "Definitions/Everywhere Dense"
The following 13 pages are in this category, out of 13 total.
E
- Definition:Everywhere Dense
- Definition:Everywhere Dense in Metric Space
- Definition:Everywhere Dense in Normed Vector Space
- Definition:Everywhere Dense in Real Numbers
- Definition:Everywhere Dense/Also known as
- Definition:Everywhere Dense/Definition 1
- Definition:Everywhere Dense/Definition 2
- Definition:Everywhere Dense/Definition 3
- Definition:Everywhere Dense/Metric Space
- Definition:Everywhere Dense/Normed Vector Space
- Definition:Everywhere Dense/Real Numbers