Definition:Finer Equivalence Relation

From ProofWiki
Jump to navigation Jump to search

Definition

Let $X$ be a set.

Let $\equiv$ and $\sim$ be equivalence relations on $X$.


Then $\equiv$ is finer than $\sim$ if and only if:

$\forall x, y \in X : x \equiv y \implies x \sim y$


Also known as

If $\equiv$ is finer than $\sim$, then $\sim$ is said to be coarser than $\equiv$.


Also see


Sources