Definition:Five-Number Summary
Jump to navigation
Jump to search
Definition
Let $S$ be a set of observations of a quantitative variable.
The five-number summary of $S$ consists of:
\((1)\) | $:$ | the least value of $S$ | |||||||
\((2)\) | $:$ | the lower quartile of $S$ | |||||||
\((3)\) | $:$ | the median of $S$ | |||||||
\((4)\) | $:$ | the upper quartile of $S$ | |||||||
\((5)\) | $:$ | the greatest value of $S$ |
Also see
Historical Note
The five-number summary was pioneered by John Wilder Tukey in $1977$.
Sources
- 1977: J.W. Tukey: Exploratory Data Analysis
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): five-number summary (J.W. Tukey, 1977)
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): five-number summary (J.W. Tukey, 1977)