Definition:Half Wave Rectified Sine Curve

From ProofWiki
Jump to navigation Jump to search

Definition

The half wave rectified sine curve is the real function $f: \R \to \R$ defined as:

$\forall t \in \R: \map f t = \begin {cases} \sin t & : 2 n \pi \le t \le \paren {2 n + 1} \pi \\ 0 & : \paren {2 n + 1} \pi \le t \le \paren {2 n + 2} \pi \end {cases}$

for all integers $n$.


Graph of Half Wave Rectified Sine Curve

The graph of the half wave rectified sine curve can be presented as follows:


Half-wave-rectified-sine-curve.png


Sources