Definition:Inclusion Functor

From ProofWiki
Jump to navigation Jump to search

Definition

Let $\mathbf D$ be a metacategory, and let $\mathbf C$ be a subcategory of $\mathbf D$.


The inclusion functor on $\mathbf C$ is the functor $\Iota_{\mathbf C}: \mathbf C \to \mathbf D$ defined by:

For all objects $C$ of $\mathbf C$:       \(\ds \Iota_{\mathbf C} C \)   \(\ds := \)   \(\ds C \)      
For all morphisms $f: C_1 \to C_2$ of $\mathbf C$:       \(\ds \Iota_{\mathbf C} f \)   \(\ds := \)   \(\ds f \)      


Also see


Sources