Inclusion Functor is Functor

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\mathbf D$ be a metacategory, and let $\mathbf C$ be a subcategory of $\mathbf D$.

Let $\Iota_{\mathbf C}: \mathbf C \to \mathbf D$ be the inclusion functor on $\mathbf C$


Then:

$\Iota_{\mathbf C}$ is a (covariant) functor


Proof

Let $f, g$ be morphisms of $\mathbf C$ such that $g \circ f$ is defined.

Then:

\(\ds \map {\Iota_{\mathbf C} } {g \circ f}\) \(=\) \(\ds g \circ f\) Definition of Inclusion Functor
\(\ds \) \(=\) \(\ds \map {\Iota_{\mathbf C} } g \circ \map {\Iota_{\mathbf C} } f\) Definition of Inclusion Functor


Also, for any object $C$ of $\mathbf C$:

\(\ds \map {\Iota_{\mathbf C} } {i_C}\) \(=\) \(\ds i_C\) Definition of Inclusion Functor
\(\ds \) \(=\) \(\ds i_{\map {\Iota_{\mathbf C} } C}\) Definition of Inclusion Functor


Hence $\Iota_{\mathbf C}$ is shown to be a covariant functor.

$\blacksquare$


Sources