Inclusion Functor is Functor
Jump to navigation
Jump to search
Theorem
Let $\mathbf D$ be a metacategory, and let $\mathbf C$ be a subcategory of $\mathbf D$.
Let $\Iota_{\mathbf C}: \mathbf C \to \mathbf D$ be the inclusion functor on $\mathbf C$
Then:
- $\Iota_{\mathbf C}$ is a (covariant) functor
Proof
Let $f, g$ be morphisms of $\mathbf C$ such that $g \circ f$ is defined.
Then:
\(\ds \map {\Iota_{\mathbf C} } {g \circ f}\) | \(=\) | \(\ds g \circ f\) | Definition of Inclusion Functor | |||||||||||
\(\ds \) | \(=\) | \(\ds \map {\Iota_{\mathbf C} } g \circ \map {\Iota_{\mathbf C} } f\) | Definition of Inclusion Functor |
Also, for any object $C$ of $\mathbf C$:
\(\ds \map {\Iota_{\mathbf C} } {i_C}\) | \(=\) | \(\ds i_C\) | Definition of Inclusion Functor | |||||||||||
\(\ds \) | \(=\) | \(\ds i_{\map {\Iota_{\mathbf C} } C}\) | Definition of Inclusion Functor |
Hence $\Iota_{\mathbf C}$ is shown to be a covariant functor.
$\blacksquare$
Sources
- 1971: Saunders Mac Lane: Categories for the Working Mathematician: Chapter $\text I$ Categories, Functors and Natural Transformations: $\S \text{3}$ Functors