Definition:Continued Product/Index
< Definition:Continued Product(Redirected from Definition:Indexed Product)
Jump to navigation
Jump to search
Definition
Let $\struct {S, \times}$ be an algebraic structure where the operation $\times$ is an operation derived from, or arising from, the multiplication operation on the natural numbers.
Let $\tuple {a_1, a_2, \ldots, a_n} \in S^n$ be an ordered $n$-tuple in $S$.
The composite is called the continued product of $\tuple {a_1, a_2, \ldots, a_n}$, and is written:
- $\ds \prod_{j \mathop = 1}^n a_j = \paren {a_1 \times a_2 \times \cdots \times a_n}$
Multiplicand
The set of elements $\set {a_j \in S}$ is called the multiplicand.
Notation
The sign $\ds \prod$ is called the product sign and is derived from the capital Greek letter $\Pi$, which is $\mathrm P$, the first letter of product.
Also see
- Results about continued products can be found here.
Historical Note
The originally investigation into the theory of infinite products was carried out by Leonhard Paul Euler.
Sources
- 1965: Seth Warner: Modern Algebra ... (previous) ... (next): Chapter $\text {III}$: The Natural Numbers: $\S 18$: Induced $N$-ary Operations
- 1982: P.M. Cohn: Algebra Volume 1 (2nd ed.) ... (previous) ... (next): Chapter $2$: Integers and natural numbers: $\S 2.1$: The integers