Definition:Infimum of Mapping/Real-Valued Function/Definition 1

From ProofWiki
Jump to navigation Jump to search

This page is about infima of real-valued functions. For other uses, see Definition:Infimum.

Definition

Let $f: S \to \R$ be a real-valued function.

Let $f$ be bounded below on $S$.


The infimum of $f$ on $S$ is defined by:

$\displaystyle \inf_{x \mathop \in S} f \left({x}\right) = \inf f \left[{S}\right]$

where

$\inf f \left[{S}\right]$ is the infimum in $\R$ of the image of $S$ under $f$.


Also see


Sources