Definition:Isolated Type
Jump to navigation
Jump to search
Definition
Let $T$ be an $\mathcal L$-theory.
Let $\phi \left({\bar v}\right)$ be an $\mathcal L$-formula in $n$ free variables $\bar v$ such that $T \cup \phi \left({\bar v}\right)$ is satisfiable.
Let $p$ be an $n$-type of $T$.
We say that $\phi$ isolates $p$ if for all $\psi \in p$, we have:
- $T \models \forall \bar{v} \left({ \phi \left({\bar v}\right) \rightarrow \psi \left({\bar v}\right) }\right)$
that is, all $\psi$ are semantic consequences of $\phi$.