Definition:Koszul Connection

From ProofWiki
Jump to navigation Jump to search

Definition

Let $M$ be a smooth manifold with or without boundary.

Let $E$ be a smooth manifold.

Let $\pi : E \to M$ be a smooth vector bundle.

Let $\map \Gamma E$ be the space of smooth sections of $E$.



Let $\map {\mathfrak{X}} M$ be the space of smooth vector fields on $M$.



Let $\map {C^\infty} M$ be the space of smooth real functions on $M$.

Let $\nabla : \map {\mathfrak{X}} M \times \map \Gamma E \to \map \Gamma E$ be the map be written $\tuple {X, Y} \mapsto \nabla_X Y$ where $X \in \map {\mathfrak{X}} M$, $Y \in \map \Gamma E$, and $\times$ denotes the cartesian product.

Suppose $\nabla$ satisfies the following:

\(\ds \nabla_{f_1 X_1 + f_2 X_2} Y\) \(=\) \(\ds f_1 \nabla_{X_1} Y + f_2 \nabla_{X_2} Y\)
\(\ds \map {\nabla_X} {a_1 Y_1 + a_2 Y_2}\) \(=\) \(\ds a_1 \nabla_X Y_1 + a_2 \nabla_X Y_2\)
\(\ds \map {\nabla_X} {f Y}\) \(=\) \(\ds f \nabla_X Y + \paren {X f} Y\)

where:

$f, f_1, f_2 \in \map {C^\infty} M$
$a_1, a_2 \in \R$


Then $\nabla$ is known as the connection in $E$.



Also see

  • Results about connections can be found here.


Source of Name

This entry was named for Jean-Louis Koszul.


Sources