Definition:Latin Square Property
Jump to navigation
Jump to search
Definition
Let $\left({S, \circ}\right)$ be an algebraic structure.
$\left({S, \circ}\right)$ has the Latin square property if and only if:
- $\forall a \in S$, the left and right regular representations $\lambda_a$ and $\rho_a$ are permutations on $S$.
That is:
- $\forall a, b \in S: \exists ! x: x \circ a = b$
- $\forall a, b \in S: \exists ! y: a \circ y = b$