Definition:Lattice (Order Theory)/Definition 3

From ProofWiki
Jump to navigation Jump to search

Definition

Let $\struct {S, \vee}$ and $\struct {S, \wedge}$ be semilattices on a set $S$.

Suppose that $\vee$ and $\wedge$ satisfy the absorption laws, that is, for all $a, b \in S$:

$a \vee \paren {a \wedge b} = a$
$a \wedge \paren {a \vee b} = a$

Let $\preceq$ be the ordering on $S$ defined by:

$\forall a, b \in S: a \preceq b$ if and only if $a \vee b = b$

as on Semilattice Induces Ordering.


Then the ordered structure $\struct {S, \vee, \wedge, \preceq}$ is called a lattice.


Thus $\struct {S, \vee, \wedge, \preceq}$ is called a lattice if and only if the lattice axioms are satisfied and $\preceq$ is defined as above:

\((\text L 0)\)   $:$   Closure      \(\ds \forall a, b:\) \(\ds a \vee b \in S \)    \(\ds a \wedge b \in S \)      
\((\text L 1)\)   $:$   Commutativity      \(\ds \forall a, b:\) \(\ds a \vee b = b \vee a \)    \(\ds a \wedge b = b \wedge a \)      
\((\text L 2)\)   $:$   Associativity      \(\ds \forall a, b, c:\) \(\ds a \vee \paren {b \vee c} = \paren {a \vee b} \vee c \)    \(\ds a \wedge \paren {b \wedge c} = \paren {a \wedge b} \wedge c \)      
\((\text L 3)\)   $:$   Idempotence      \(\ds \forall a:\) \(\ds a \vee a = a \)    \(\ds a \wedge a = a \)      
\((\text L 4)\)   $:$   Absorption      \(\ds \forall a,b:\) \(\ds a \vee \paren {a \wedge b} = a \)    \(\ds a \wedge \paren {a \vee b} = a \)      


Also see


Sources