Semilattice Induces Ordering

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {S, \circ}$ be a semilattice.

Let $\RR$ be the relation on $S$ defined by, for all $a, b \in S$:

$a \mathrel \RR b$ if and only if $a \circ b = b$


Then $\RR$ is an ordering.


Proof

Let us verify that $\RR$ satisfies the three conditions for an ordering.


Reflexivity

From Semilattice Axiom $\text {SL} 3$: Idempotence:

$\forall a \in S: a \circ a = a$

Hence by definition of $\RR$:

$\forall a \in S: a \mathrel \RR a = a$


So $\RR$ has been shown to be reflexive.

$\Box$


Antisymmetry

Let $a, b \in S$ such that $a \mathrel \RR b$ and $b \mathrel \RR a$.

\(\ds a \circ b\) \(=\) \(\ds b\) Definition of $\RR$
\(\ds b \circ a\) \(=\) \(\ds a\) Definition of $\RR$
\(\ds \leadsto \ \ \) \(\ds a \circ b\) \(=\) \(\ds a\) Semilattice Axiom $\text {SL} 2$: Commutativity
\(\ds \leadsto \ \ \) \(\ds a\) \(=\) \(\ds b\)


So $\RR$ has been shown to be antisymmetric.

$\Box$


Transitivity

Let $a, b, c \in S$ such that $a \mathrel \RR b$ and $b \mathrel \RR c$.

Thus:

\(\ds a \circ b\) \(=\) \(\ds b\) Definition of $\RR$
\(\ds b \circ c\) \(=\) \(\ds c\) Definition of $\RR$
\(\ds \leadsto \ \ \) \(\ds \paren {a \circ b} \circ c\) \(=\) \(\ds b \circ c\)
\(\ds \) \(=\) \(\ds c\)
\(\ds \) \(=\) \(\ds a \circ \paren {b \circ c}\) Semilattice Axiom $\text {SL} 1$: Associativity
\(\ds \) \(=\) \(\ds a \circ c\)
\(\ds \leadsto \ \ \) \(\ds a\) \(\RR\) \(\ds c\) Definition of $\RR$


So $\RR$ has been shown to be transitive.

$\Box$


Having verified all three conditions, it follows that $\RR$ is an ordering.

$\blacksquare$


Sources