Definition:Linear Ring Action/Left

From ProofWiki
Jump to navigation Jump to search


Let $R$ be a ring.

Let $M$ be an abelian group.

Let $\circ : R \times M \to M$ be a mapping from the cartesian product $R \times M$.

$\circ$ is a left linear ring action of $R$ on $M$ if and only if $\circ$ satisfies the left ring action axioms:

\((1)\)   $:$     \(\ds \forall \lambda \in R: \forall m, n \in M:\)    \(\ds \lambda \circ \paren {m + n} \)   \(\ds = \)   \(\ds \paren {\lambda \circ m} + \paren {\lambda \circ n} \)      
\((2)\)   $:$     \(\ds \forall \lambda, \mu \in R: \forall m \in M:\)    \(\ds \paren {\lambda + \mu} \circ m \)   \(\ds = \)   \(\ds \paren {\lambda \circ m} + \paren {\mu \circ m} \)      
\((3)\)   $:$     \(\ds \forall \lambda, \mu \in R: \forall m \in M:\)    \(\ds \paren {\lambda \mu} \circ m \)   \(\ds = \)   \(\ds \lambda \circ \paren {\mu \circ m} \)      

Also known as

A left ring action is also known as a ring action.

Also see