Definition:Linear Ring Action
Jump to navigation
Jump to search
This page is about Linear Ring Action. For other uses, see Action.
Definition
Let $R$ be a ring.
Let $M$ be an abelian group.
Left Ring Action
Let $\circ : R \times M \to M$ be a mapping from the cartesian product $R \times M$.
$\circ$ is a left linear ring action of $R$ on $M$ if and only if $\circ$ satisfies the left ring action axioms:
\((1)\) | $:$ | \(\ds \forall \lambda \in R: \forall m, n \in M:\) | \(\ds \lambda \circ \paren {m + n} \) | \(\ds = \) | \(\ds \paren {\lambda \circ m} + \paren {\lambda \circ n} \) | ||||
\((2)\) | $:$ | \(\ds \forall \lambda, \mu \in R: \forall m \in M:\) | \(\ds \paren {\lambda + \mu} \circ m \) | \(\ds = \) | \(\ds \paren {\lambda \circ m} + \paren {\mu \circ m} \) | ||||
\((3)\) | $:$ | \(\ds \forall \lambda, \mu \in R: \forall m \in M:\) | \(\ds \paren {\lambda \mu} \circ m \) | \(\ds = \) | \(\ds \lambda \circ \paren {\mu \circ m} \) |
Right Ring Action
Let $\circ : M \times R \to M$ be a mapping from the cartesian product $M \times R$.
$\circ$ is a right linear ring action of $R$ on $M$ if and only if $\circ$ satisfies the right ring action axioms:
\((1)\) | $:$ | \(\ds \forall \lambda \in R: \forall m, n \in M:\) | \(\ds \paren {m + n} \circ \lambda \) | \(\ds = \) | \(\ds \paren {m \circ \lambda} + \paren {n \circ \lambda} \) | ||||
\((2)\) | $:$ | \(\ds \forall \lambda, \mu \in R: \forall m \in M:\) | \(\ds m \circ \paren {\lambda + \mu} \) | \(\ds = \) | \(\ds \paren {m \circ \lambda} + \paren {m \circ \mu} \) | ||||
\((3)\) | $:$ | \(\ds \forall \lambda, \mu \in R: \forall m \in M:\) | \(\ds m \circ \paren {\lambda\mu} \) | \(\ds = \) | \(\ds \paren {m \circ \lambda} \circ \mu \) |
Also known as
A left ring action is also known as a ring action.
Also see
- Results about linear ring actions can be found here.
Sources
![]() | There are no source works cited for this page. Source citations are highly desirable, and mandatory for all definition pages. Definition pages whose content is wholly or partly unsourced are in danger of having such content deleted. To discuss this page in more detail, feel free to use the talk page. |