Definition:Limit of Sets

From ProofWiki
Jump to navigation Jump to search

Definition

Let $\Bbb S = \left\{{E_n : n \in \N}\right\}$ be a sequence of sets.

Let the limit superior of $\Bbb S$ be equal to the limit inferior of $\Bbb S$.


Then the limit of $\Bbb S$, denoted $\displaystyle \lim_{n \to \infty} E_n$, is defined as:

$\displaystyle \lim_{n \to \infty} E_n := \limsup_{n \to \infty} E_n$

and so also:

$\displaystyle \lim_{n \to \infty} E_n := \liminf_{n \to \infty} E_n$

and $\Bbb S$ converges to the limit.


Also see


Sources