Definition:Linear Combination/Sequence
< Definition:Linear Combination(Redirected from Definition:Linear Combination of Sequence)
Jump to navigation
Jump to search
Definition
Let $M$ be an $R$-module.
Let $\sequence {a_n} := \sequence {a_j}_{1 \mathop \le j \mathop \le n}$ be a sequence of elements of $M$ of length $n$.
An element $b \in M$ is a linear combination of $\sequence {a_n}$ if and only if:
- $\ds \exists \sequence {\lambda_n} \subseteq R: b = \sum_{k \mathop = 1}^n \lambda_k a_k$
Also see
- Definition:Linear Combination
- Definition:Linear Combination of Subset
- Definition:Linear Combination of Empty Set
Sources
- 1965: Seth Warner: Modern Algebra ... (previous) ... (next): Chapter $\text {V}$: Vector Spaces: $\S 27$. Subspaces and Bases