Definition:Lower Bound of Sequence/Real
Jump to navigation
Jump to search
This page is about Lower Bound of Real Sequence. For other uses, see Lower Bound.
Definition
Let $\sequence {x_n}$ be a real sequence.
Let $\sequence {x_n}$ be bounded below in $T$ by $L \in \R$.
Then $L$ is a lower bound of $\sequence {x_n}$.
Lower Bound of Number
When considering the lower bound of a set of numbers, it is commonplace to ignore the set and instead refer just to the number itself.
Thus the construction:
- The set of numbers which fulfil the propositional function $P \left({n}\right)$ is bounded below with the lower bound $N$
would be reported as:
- The number $n$ such that $P \left({n}\right)$ has the lower bound $N$.
This construct obscures the details of what is actually being stated. Its use on $\mathsf{Pr} \infty \mathsf{fWiki}$ is considered an abuse of notation and so discouraged.
This also applies in the case where it is the lower bound of a mapping which is under discussion.
Also see
Sources
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): bounded sequence
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): bounded sequence