Definition:Matroid/Definition 2

From ProofWiki
Jump to navigation Jump to search

Definition

Let $M = \struct {S, \mathscr I}$ be an independence system.


$M$ is called a matroid on $S$ if and only if $M$ also satisfies:

\((\text I 3')\)   $:$     \(\ds \forall U, V \in \mathscr I:\) \(\ds \size U = \size V + 1 \implies \exists x \in U \setminus V : V \cup \set x \in \mathscr I \)      


Matroid Axioms

The properties of a matroid are as follows.

For a given matroid $M = \struct {S, \mathscr I}$ these statements hold true:

\((\text I 1)\)   $:$   \(\ds \O \in \mathscr I \)      
\((\text I 2)\)   $:$     \(\ds \forall X \in \mathscr I: \forall Y \subseteq S:\) \(\ds Y \subseteq X \implies Y \in \mathscr I \)      
\((\text I 3')\)   $:$     \(\ds \forall U, V \in \mathscr I:\) \(\ds \size U = \size V + 1 \implies \exists x \in U \setminus V : V \cup \set x \in \mathscr I \)      


Sources