Definition:Measurable Function
Real-Valued Function
Definition 1
Let $\struct {X, \Sigma}$ be a measurable space.
Let $E \in \Sigma$.
Then a function $f: E \to \R$ is said to be $\Sigma$-measurable on $E$ if and only if:
- $\forall \alpha \in \R: \set {x \in E: \map f x \le \alpha} \in \Sigma$
Definition 2
Let $\struct {X, \Sigma}$ be a measurable space.
Let $E \in \Sigma$.
Let $\Sigma_E$ be the trace $\sigma$-algebra of $E$ in $\Sigma$.
Let $\map \BB \R$ be the Borel $\sigma$-algebra on $\R$.
Let $f : E \to \R$ be a real-valued function.
We say that $f$ is ($\Sigma$-)measurable if and only if:
Definition 3
Let $\struct {X, \Sigma}$ be a measurable space.
Let $E \in \Sigma$.
Then a function $f: E \to \R$ is said to be $\Sigma$-measurable on $E$ if and only if at least one of the following holds:
- $(1): \quad \forall \alpha \in \R : \set {x \in E : \map f x \le \alpha} \in \Sigma$
- $(2): \quad \forall \alpha \in \R : \set {x \in E : \map f x < \alpha} \in \Sigma$
- $(3): \quad \forall \alpha \in \R : \set {x \in E : \map f x \ge \alpha} \in \Sigma$
- $(4): \quad \forall \alpha \in \R : \set {x \in E : \map f x > \alpha} \in \Sigma$
Definition 4
Let $\struct {X, \Sigma}$ be a measurable space.
Let $E \in \Sigma$.
Then a function $f: E \to \R$ is said to be $\Sigma$-measurable on $E$ if and only if:
- $\forall a, b \in \R, a < b: \set {x \in E: a < \map f x < b} \in \Sigma$
Extended Real-Valued Function
Definition 1
Let $\struct {X, \Sigma}$ be a measurable space.
Let $E \in \Sigma$.
Then a function $f: E \to \overline \R$ is said to be $\Sigma$-measurable on $E$ if and only if:
- $\forall \alpha \in \R: \set {x \in E: \map f x \le \alpha} \in \Sigma$
Definition 2
Let $\struct {X, \Sigma}$ be a measurable space.
Let $E \in \Sigma$.
Let $\Sigma_E$ be the trace $\sigma$-algebra of $E$ in $\Sigma$.
Let $\map \BB {\overline \R}$ be the Borel $\sigma$-algebra on the extended real number space.
Let $f : E \to \overline \R$ be an extended real-valued function.
We say that $f$ is ($\Sigma$-)measurable if and only if:
Definition 3
Let $\struct {X, \Sigma}$ be a measurable space.
Let $E \in \Sigma$.
Then a function $f: E \to \overline \R$ is said to be $\Sigma$-measurable on $E$ if and only if at least one of the following holds:
- $(1) \quad$ $\forall \alpha \in \R : \set {x \in E : \map f x \le \alpha} \in \Sigma$
- $(2) \quad$ $\forall \alpha \in \R : \set {x \in E : \map f x < \alpha} \in \Sigma$
- $(3) \quad$ $\forall \alpha \in \R : \set {x \in E : \map f x \ge \alpha} \in \Sigma$
- $(4) \quad$ $\forall \alpha \in \R : \set {x \in E : \map f x > \alpha} \in \Sigma$
Positive Measurable Function
Let $\struct {X, \Sigma}$ be a measurable space.
Let $S \in \set {\R, \overline \R}$.
Let $f : X \to S$ be a $\Sigma$-measurable function.
We say that $f$ is a positive $\Sigma$-measurable function if and only if:
- $f \ge 0$
where $\ge$ denotes pointwise inequality.
Banach Space Valued Function
Let $\GF \in \set {\R, \C}$.
Let $I$ be a real interval.
Let $X$ be a Banach space over $\GF$.
Let $f : I \to X$ be a function.
We say that $f$ is measurable if there exists a sequence of simple functions $\sequence {f_n}_{n \mathop \in \N}$ such that:
- $\ds \map f t = \lim_{n \mathop \to \infty} \map {f_n} t$
for Lebesgue almost all $t \in I$.
Also see
- Measurable Mapping, a more general notion of which this is a specialization.
- Space of Measurable Functions, naming collections of $\Sigma$-measurable functions conveniently
- Results about measurable functions can be found here.
Sources
![]() | This page may be the result of a refactoring operation. As such, the following source works, along with any process flow, will need to be reviewed. When this has been completed, the citation of that source work (if it is appropriate that it stay on this page) is to be placed above this message, into the usual chronological ordering. In particular: which definition or definitions? If you have access to any of these works, then you are invited to review this list, and make any necessary corrections. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{SourceReview}} from the code. |
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): measurable function