Definition:Module on Cartesian Product

From ProofWiki
Jump to navigation Jump to search

Definition

Let $\struct {R, +_R, \times_R}$ be a ring.

Let $n \in \N_{>0}$.

Let $+: R^n \times R^n \to R^n$ be defined as:

$\tuple {\alpha_1, \ldots, \alpha_n} + \tuple {\beta_1, \ldots, \beta_n} = \tuple {\alpha_1 +_R \beta_1, \ldots, \alpha_n +_R \beta_n}$

Let $\times: R \times R^n \to R^n$ be defined as:

$\lambda \times \tuple {\alpha_1, \ldots, \alpha_n} = \tuple {\lambda \times_R \alpha_1, \ldots, \lambda \times_R \alpha_n}$


Then $\struct {R^n, +, \times}_R$ is the $R$-module $R^n$.


Also see

  • Results about Module on Cartesian Product can be found here.


Sources