Definition:Module on Cartesian Product
Jump to navigation
Jump to search
Definition
Let $\struct {R, +_R, \times_R}$ be a ring.
Let $n \in \N_{>0}$.
Let $+: R^n \times R^n \to R^n$ be defined as:
- $\tuple {\alpha_1, \ldots, \alpha_n} + \tuple {\beta_1, \ldots, \beta_n} = \tuple {\alpha_1 +_R \beta_1, \ldots, \alpha_n +_R \beta_n}$
Let $\times: R \times R^n \to R^n$ be defined as:
- $\lambda \times \tuple {\alpha_1, \ldots, \alpha_n} = \tuple {\lambda \times_R \alpha_1, \ldots, \lambda \times_R \alpha_n}$
Then $\struct {R^n, +, \times}_R$ is the $R$-module $R^n$.
Special Case
A special case of this is for when $n = 1$:
Let $+: R \times R \to R$ be defined as:
- $\alpha + \beta = \alpha +_R \beta$
Let $\times: R \times R \to R$ be defined as:
- $\lambda \times \alpha = \lambda \times_R \alpha$
Then $\struct {R, +, \times}_R$ is the $R$-module $R$.
Also see
- Results about Module on Cartesian Product can be found here.
Sources
- 1965: Seth Warner: Modern Algebra ... (previous) ... (next): Chapter $\text {V}$: Vector Spaces: $\S 26$. Vector Spaces and Modules: Example $26.1$