Definition:Moore-Penrose Pseudoinverse

From ProofWiki
Jump to navigation Jump to search

Definition

Let $\mathbf A$ be a matrix of order $m \times n$ over the complex numbers $\C$.

Definition 1

The Moore-Penrose pseudoinverse of $\mathbf A$ is the unique $n \times m$ matrix $\mathbf A^+$ defined as:

$\mathbf A^+ = \begin {cases} \paren {\mathbf A^\intercal \mathbf A}^{-1} \mathbf A^\intercal & : m > n \\ \mathbf A^\intercal \paren {\mathbf A \mathbf A^\intercal}^{-1} & : n < m \end {cases}$

where $\mathbf A^\intercal$ denotes the transpose of $\mathbf A$.


Definition 2

The Moore-Penrose pseudoinverse of $\mathbf A$ is the unique $n \times m$ matrix $A^+$ which satisfies the four Moore-Penrose conditions:

\((1)\)   $:$      \(\ds \mathbf A \mathbf X \mathbf A \)   \(\ds = \)   \(\ds \mathbf A \)      
\((2)\)   $:$      \(\ds \mathbf X \mathbf A \mathbf X \)   \(\ds = \)   \(\ds \mathbf X \)      
\((3)\)   $:$      \(\ds \mathbf A \mathbf X \)   \(\ds = \)   \(\ds \paren {\mathbf A \mathbf X}^* \)      
\((4)\)   $:$      \(\ds \mathbf X \mathbf A \)   \(\ds = \)   \(\ds \paren {\mathbf X \mathbf A}^* \)      

where $\mathbf A^*$ denotes the Hermitian conjugate of $\mathbf A$.


Examples

Arbitrary Example

Let $\mathbf A$ be the matrix:

$\mathbf A := \begin {pmatrix} 2/3 & 0 \\ 5/6 & 1/2 \\ 1/3 & 1 \end {pmatrix}$


The Moore-Penrose pseudoinverse of $\mathbf A$ is:

$\mathbf A^+ := \begin {pmatrix} 5/6 & 2/3 & -1/3 \\ -1/2 & 0 & 1 \end {pmatrix}$


Also known as

A Moore-Penrose pseudoinverse can also be seen hyphenated: Moore-Penrose pseudo-inverse.

Some sources refer to it as a Moore-Penrose inverse.

Some sources refer to it as just a pseudoinverse, or again hyphenated: pseudo-inverse


Also see

  • Results about Moore-Penrose pseudoinverses can be found here.


Source of Name

This entry was named for Eliakim Hastings Moore and Roger Penrose.


Historical Note

The concept of the Moore-Penrose pseudoinverse was defined by Eliakim Hastings Moore in $1920$, and then again by Roger Penrose in $1955$.


Sources